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1. Minimization of quadratic function on affine subspace. Let H ∈ Rn×n, A ∈
Rp×n, b ∈ Rp, c ∈ Rn and assume that H is positive definite. Consider the optimization problem

min f(x) subject to x ∈ S,

where f(x) = 1
2
x⊤Hx+ c⊤x and S = {x ∈ Rn | Ax = b}. We assume S is non-empty.

1. Write the Lagrangian function L for this problem. What is its domain?

2. What is the primal function LP and its domain?

3. Obtain an explicit expression for the dual function LD. What is its domain? What is the
dual problem?

4. Find a characterization for points that solve the dual problem. Hint: You should find
that they are defined by a linear system of equations.

5. Argue that strong duality holds by checking the assumptions of the strong duality theorem
explicitly. Use your reasoning here to argue that the linear system of equations you found
in the previous question has a solution.

6. Use strong duality to solve the primal problem. Check that the solution satisfies the
constraints.

As a side note for context: the exercise would become quite a bit harder (and interesting) if we
only assume H positive semidefinite.

Answer.

1. The Lagrangian L : Rn × Rp is given by

L(x, µ) =
1

2
x⊤Hx+ c⊤x+ µ⊤(Ax− b).

2. As always, the primal function is

LP (x) = sup
µ∈Rp

L(x, µ) =

{
f(x) if x ∈ S

+∞ otherwise.
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3. The dual function is given by

LD(µ) = inf
x∈Rn

L(x, µ)

= inf
x∈Rn

1

2
x⊤Hx+ (c⊤ + µ⊤A)x− µ⊤b.

The infimum of x 7→ 1
2
x⊤Hx + (c⊤ + µ⊤A)x − µ⊤b is attained at x = −H−1(A⊤µ + c)

using the fact that the function is strongly convex and that its unique minimum is attained
when the gradient is zero. So we find that

LD(µ) =
1

2
(µ⊤A+ c⊤)H−1(A⊤µ+ c)− (µ⊤A+ c⊤)H−1(A⊤µ+ c)− µ⊤b

= −1

2
µ⊤AH−1A⊤µ− (µ⊤A+ c⊤)H−1c− µ⊤b

= −1

2
µ⊤AH−1A⊤µ− (AH−1c+ b)⊤µ− c⊤H−1c.

The dual problem consists in maximizing LD for µ ∈ Rp.

4. The dual function is concave and we want to maximize it. Optimal points are found
where the gradient is zero. They satisfy

AH−1A⊤µ+ (AH−1c+ b) = 0.

5. The primal admits a global minimizer as the function is strongly convex on a non-empty
closed and convex set (an affine subspace). Constraints are affine so constraint qualifi-
cations hold everywhere. Moreover x 7→ L(x, µ) is convex for all µ. We conclude that
hypotheses from the strong duality theorem hold: we have strong duality.

Let x∗ be any global minimizer for the primal. We know it is a KKT point, and so there
exists a vector of Lagrange multipliers µ∗ for x∗. Strong duality tells us that µ∗ is optimal
for the dual. Therefore, the linear system we have found in the previous question admits
µ∗ as a solution: there exists at least one solution.

6. Let µ∗ be a solution of the dual problem, that is, it satisfies

AH−1A⊤µ∗ + (AH−1c+ b) = 0.

(Existence of µ∗ was argued in the previous question.) The strong duality theorem tells
us that a solution x∗ to the original problem is a minimum of

min
x∈Rn

L(x, µ∗) =
1

2
x⊤Hx+ c⊤x+ (µ∗)⊤(Ax− b).

This is a strongly convex quadratic problem and the gradient is given by Hx+ c+A⊤µ∗

for all x ∈ Rn. This gives that

x∗ = −H−1(A⊤µ∗ + c).

Thus, to solve the problem, we can solve the linear system that provides us µ∗, then solve
the linear system that provides us x∗. It is not difficult to check that Ax∗ = b, that is, x∗

satisfies the constraint (as it should).
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